化石能源的消耗、生态环境的不断恶化,导致大力开发和利用可再生清洁能源解决当前的能源危机成为当务之急。然而可再生能源因其本身具有不均匀性、间断特性,导致它的利用率和占比低。水电解制氢技术已相当成熟,尤其是基于PEM电解水制氢系统的响应速度快,适应动态操作的特点,适合于可再生能源消纳制氢,将制取的氢气作为燃料应用在工业P2G中,是近年来氢储能和能源循环的发展思路。
PEM电解水制氢系统
PEM水电解制氢选用具有良好化学稳定性、质子传导性、气体分离性的全氟磺酸质子交换膜作为固体电解质替代石棉膜,能有效阻止电子传递,提高电解槽安全性。
PEM水电解槽主要部件由内到外依次是质子交换膜、阴阳极催化层、阴阳极气体扩散层、阴阳极端板等。其中扩散层、催化层与质子交换膜组成膜电极,是整个水电解槽物料传输以及电化学反应的主场所,膜电极特性与结构直接影响PEM水电解槽的性能和寿命。
曲线微导力系统
微导力系统能够通过分离技术,将水中的离子与水分离,降低水中离子的含量,达到净化水质及降低水中离子的目的。系统能够提高水利用率20-30%,降低设备能耗10-20%,自动化程度高,可实现无人值守,减少人员操作,安全系数高。曲线微导力系统能够高效、稳定、安全的生产纯水,保障电解槽的纯水供应。
为了能够有效保证电解水的纯度,避免水中的其他电解质对电解纯水的影响。在制氢过程中,电解的纯水需要通过曲线微导力系统来生产,能够有效保证电解水的纯度,避免水中的其他电解质对电解纯水的影响。曲线微导力系统能够与PEM纯水电解制氢系统“联动”操作,联合控制,能够实现全自动制水、数据远程上传。